skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sherwood, Ben"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The National Alzheimer's Coordinating Center Uniform Data Set includes test results from a battery of cognitive exams. Motivated by the need to model the cognitive ability of low‐performing patients we create a composite score from ten tests and propose to model this score using a partially linear quantile regression model for longitudinal studies with non‐ignorable dropouts. Quantile regression allows for modeling non‐central tendencies. The partially linear model accommodates nonlinear relationships between some of the covariates and cognitive ability. The data set includes patients that leave the study prior to the conclusion. Ignoring such dropouts will result in biased estimates if the probability of dropout depends on the response. To handle this challenge, we propose a weighted quantile regression estimator where the weights are inversely proportional to the estimated probability a subject remains in the study. We prove that this weighted estimator is a consistent and efficient estimator of both linear and nonlinear effects. 
    more » « less